Tetrahedron Letters 49 (2008) 5863-5866

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Regioselective *ortho*-hydroxylation of aryl moiety of 2-arylpyridines using Pd(OAc)₂/Oxone in PEG-3400/*tert*-BuOH

Sung Hwan Kim, Hyun Seung Lee, Se Hee Kim, Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

ARTICLE INFO

Article history: Received 20 June 2008 Revised 15 July 2008 Accepted 18 July 2008 Available online 29 July 2008

Keywords: 2-Arylpyridines Hydroxylation Pd(OAc)₂ Oxone Baylis-Hillman adducts

ABSTRACT

Regioselective *ortho*-hydroxylation of aryl moiety of 2-arylpyridines was carried out under the influence of Pd(OAc)₂/Oxone (potassium peroxymonosulfate) in PEG-3400/*t*-BuOH in moderate yields. © 2008 Elsevier Ltd. All rights reserved.

Recently, palladium-mediated C–H bond activations of 2-arylpyridines and related systems are regarded as one of the hot topics.^{1–4} Introductions of various functional groups have been reported, including alkyls,¹ aryls,² halogens³ and acetoxy group.⁴ Although many types of functionalizations have been reported, direct hydroxylation is unprecedented to the best of our knowledge. $^{\rm 1-5}$

Very recently we reported an efficient synthetic method of poly-substituted pyridines from Baylis-Hillman adducts via the [3+2+1] annulation protocol.⁶ Further functionalization of the

Scheme 1.

* Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389. *E-mail address*: kimjn@chonnam.ac.kr (J. N. Kim).

0040-4039/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.07.141

Table 1			
Optimization	for the	synthesis	of 7a

Entry	Conditions	Products (%)		3a (%)		
		4 a	5a	6a	7a	
1	Pd(OAc) ₂ (10 mol %), Phl(OAc) ₂ (2.0 equiv), AcOH, Ac ₂ O, 100–110 °C, 1 h	61	nd	nd	nd	nd
2	Pd(OAc) ₂ (10 mol %), Oxone (2.0 equiv), AcOH, Ac ₂ O, 100–110 °C, 3 h	44	nd	nd	nd	nd
3	Pd(OAc) ₂ (10 mol %), Phl(OAc) ₂ (2.0 equiv), <i>t</i> -BuOH, reflux, 10 h	45	nd	nd	3	nd
4	Pd(OAc) ₂ (10 mol %), Oxone (2.0 equiv), MeOH, reflux, 2 h	nd	11	nd	3	60
5	Pd(OAc) ₂ (10 mol %), Oxone (2.0 equiv), iso-PrOH, reflux, 2 h	nd	nd	10	8	53
6	Pd(OAc) ₂ (10 mol %), Oxone (2.0 equiv), <i>t</i> -BuOH, reflux, 4 h	nd	nd	nd	64	nd
7	Pd(OAc) ₂ (10 mol %), Oxone (2.0 equiv), <i>t</i> -amyl alcohol, 80–90 °C, 2 h	nd	nd	nd	47	nd
8	Pd(OAc) ₂ (10 mol %), Oxone (5.0 equiv), PEG-3400/ <i>t</i> -BuOH, 80–90 °C, 2 h	nd	nd	nd	76	nd
9	$Pd(OAc)_2$ (10 mol %), Oxone (2.0 equiv), CH ₃ CN, reflux, 8 h	nd	nd	nd	nd	20
10	Pd(OAc) ₂ (10 mol %), K ₂ S ₂ O ₈ (2.0 equiv), <i>t</i> -BuOH, reflux, 16 h	nd	nd	nd	11	23

pyridines would provide valuable pyridine derivatives, which could be used for many purposes.^{7–9} In this respect, we decided to examine the feasibility for the regioselective introduction of acetoxy or alkoxy group at the ortho-position of 2-aryl moiety (vide infra. Scheme 1).

Starting material **3a** was prepared as reported in good vield.⁶ With this compound 3a, we examined acetoxylation as the first trial under the reported conditions which comprised $Pd(OAc)_2$ PhI(OAc)₂/AcOH/Ac₂O at 100-110 °C.⁴ Compound 4a was synthesized in 61% yield in 1 h (Scheme 1, entry 1 in Table 1). The use of Oxone (potassium peroxymonosulfate) or the reaction in tert-BuOH resulted in lower yield of product 4a (entries 2 and 3).

Entry	Substrate ^a (%)	Product ^b (%)
1	Ph Ph N 3a (77/88)	Ph Ph 7a (76) HO
2	Ph Ph Ph(4-OMe) N OMe OMe	Ph Ph(4-OMe) N 7b (61) HO ON
3	Ph Ph N Cl 3c (79/81)	Ph Ph N 7c (58) HO CI
4	Ph Ph N 3d (75/80) Me	Ph Ph N 7d (61) HO Me
5	Ph Ph N 3e (86/75)	Ph Ph N 7e (not) ^c HO
6	Ph Ph N 3f (72/77)	Ph Ph

^a Prepared according to Ref. 6 and the first yield refer to the first S_N2' step and the second one to the synthesis of pyridine.

Conditions: Substrate 3 (1.0 equiv), Pd(OAc)₂ (10 mol %), PEG-3400/t-BuOH, Oxone (5.0 equiv), 80-90 °C, 2 h.

No reaction even at 120 °C.

`OMe

As a next trial, the synthesis of alkoxy derivatives was examined under the conditions of Pd(OAc)₂/Oxone/alcohol (Scheme 1, entries 4 and 5 in Table 1). The reaction was sluggish and the corresponding methoxy- and iso-propoxy derivatives, 5a and 6a, were obtained in only 10-11% yields. However, we observed the formation of phenol derivative 7a, albeit in low yields (3-8%), very interestingly. We thought that the yield of **7a** could be increased by using non-oxidizable alcohol solvent such as tert-butanol instead of methanol or 2-propanol. Thus, a variety of conditions were examined in order to find an optimized one (entries 6-10 in Table 1). As expected, **7a** was isolated in 64% vield in *tert*-butanol (entry 6). The use of tert-amyl alcohol or acetonitrile was less effective (entries 7 and 9). The best yield of **7a** was observed when the reaction was carried out in PEG-3400/tert-butanol¹⁰ as reaction medium with 5.0 equiv of Oxone (76%, entry 8). The use of $K_2S_2O_8$ was less effective (entry 10).

Encouraged by the results, we synthesized various 2-arylpyridine derivatives **3b**–**j** according to our previous Letter.⁶ Introduction

Scheme 2.

of ketone compound **2** at the primary position of Baylis-Hillman acetate **1** was carried out with the aid of K_2CO_3 in DMF in good yields (72–86%). Next, pyridine synthesis with NH₄OAc was also carried out as reported in 73–88% yields.⁶ With these starting materials we examined the selective *ortho*-hydroxylation under the optimized conditions and the results are summarized in Table 2.

The corresponding 2-hydroxy derivatives were synthesized in moderate to good yields in most cases (**7a–d**, **7i**, **7j**). Tricyclic compound **7h** was obtained in good yield (80%) when we used **3h** (entry 8). This compound must be formed *via* the intramolecular lactonization of the initially generated *ortho*-hydroxy intermediate. However, the reaction was completely failed with 2,5-dimethyl and 2,4-dimethyl derivatives, **3e** and **3f** (entries 5 and 6). We could not obtain any trace amounts of desired products (**7e**, **7f**) in these cases even at elevated temperature. Whereas we obtained low yield of product **7g** (28%) from 3,4-dimethyl derivative **3g** (entry 7). Based on the experimental results, the failure for the dimethyl cases, **3e** and **3f**, might be due to the steric effect of the *ortho*-methyl group, which makes the formation of the palladacycle intermediate difficult.

When we add some water to the reaction mixture of **3a**, the yield of **7a** was decreased. When the reaction was carried out under strictly controlled nitrogen atmosphere, compound **7a** was obtained in a similar yield. From these experiments, we tentatively propose the mechanism involving the Oxone as a plausible source of oxygen atom (Scheme 2): Oxidative insertion of Pd(0) into the weak O–O bond of Oxone^{1a} and the liberation of product (ArOH) and KHSO₄. Further studies on the reaction mechanism and the synthetic applicability of these findings are actively under progress.^{11–13}

In summary, we disclosed the synthesis of poly-substituted pyridines functionalized with hydroxyl group regioselectively *via* the Pd-mediated C–H activation process. Further studies on the reaction mechanism and the biological activities of prepared compounds are currently underway.

Acknowledgements

This study was financially supported by Chonnam National University, 2007. Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- For the Pd-mediated ortho-arylation of 2-arylpyridine and related compounds, see: (a) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904–11905; (b) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047–14049; (c) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972–4973; (d) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330–7331.
- For the Pd-mediated ortho-halogenation of 2-arylpyridine and related compounds, see: (a) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523–2526; (b) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134–7135; (c) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Tetrahedron 2006, 62, 11483–11498.
- For the Pd-mediated ortho-acetoxylation of 2-arylpyridine and related compounds, see: (a) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149–4152;
 (b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300–2301;
 (c) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006, 8, 1141–1144; (d) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542–9543; (e) Kalberer, E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal. A 2006, 251, 108–113; (f) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717– 4720.
- For other examples on the transition metal-catalyzed ortho-functionalization of 2-arylpyridine and related compounds, see: (a) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304–3306; (b) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–1712; (c) Spencer, J.; Chowdhry, B. Z.; Mallet, A. I.; Rathnam, R. P.; Adatia, T.; Bashall, A.; Rominger, F. Tetrahedron 2008, 64, 6082–6089; (d) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858–9859; (e) Imoto, S.; Uemura, T.; Kakiuchi, F.; Chatani, N. Synlett 2007, 170–172; (f) Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156–1157; (g) Oi, S.; Sato, H.; Sugawara, S.; Inoue, Y. Org. Lett. 2008, 10, 1823–1826; (h) Vogler, T.; Studer, A. Org. Lett. 2008, 10, 129–131; (i) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790–6791.
- Kim, S. H.; Kim, K. H.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2008, 49, 1948– 1951.
- 7 For the synthesis and biological activities of 2-(2-hydroxyaryl)pyridine derivatives, see: (a) Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Masuda, T.; Shintani, T.; Sato, H.; Koriyama, Y.; Fukushima, K.; Nunami, N.; Yamauchi, M.; Fuchikami, K.; Komura, H.; Watanabe, A.; Ziegelbauer, K. B.; Bacon, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Lett. 2004, 14, 4019-4022; (b) Murata, T.; Shimada, M.; Kadono, H.; Sakakibara, S.; Yoshino, T.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Lett. 2004, 14, 4013-4017; (c) Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai, K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Lett. 2003, 13, 913-918; (d) Hong, F.; Hollenback, D.; Singer, J. W.; Klein, P. Bioorg. Med. Chem. Lett. 2005, 15, 4703-4707; (e) Nason, D. M.; Heck, S. D.; Bodenstein, M. S.; Lowe, J. A., III; Nelson, R. B.; Liston, D. R.; Nolan, C. E.; Lanyon, L. F.; Ward, K. M.; Volkmann, R. A. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 4511–4514; (f) Cheney, I. W.; Yan, S.; Appleby, T.; Walker, H.; Vo, T.; Yao, N.; Hamatake, R.; Hong, Z.; Wu, J. Z. Bioorg. Med. Chem. Lett. 2007, 17, 1679-1683.
- For the applications of 2-(2-hydroxyaryl)pyridine derivatives, see: (a) Reichardt, C.; Che, D.; Heckenkemper, G.; Schafer, G. Eur. J. Org. Chem. 2001, 2343–2361; (b) Lam, F.; Xu, J. X.; Chan, K. S. J. Org. Chem. 1996, 61, 8414–8418.
- For our recent reports on the synthesis of pyridine and related compounds from Baylis-Hillman adducts, see: (a) Gowrisankar, S.; Lee, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. **2008**, 49, 1670–1673; (b) Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. **2006**, 27, 439–442; (c) Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. **2005**, 46, 8799–8803.
- 10. The following is typical procedure for the synthesis of 7a: A mixture of 3a (168 mg, 0.5 mmol), Pd(OAc)₂ (11 mg, 0.05 mmol), Oxone (1.54 g, 2.5 mmol) in PEG-3400 (1.0 g) and tert-butanol (2 mL) was heated to 80–90 °C for 2 h. After cooling to room temperature, the reaction mixture was poured into water and extracted with ether. Pure product 7a was obtained by column separation process (hexanes/CH₂Cl₂/EtOAc, 20:3:1) as a yellow solid, 134 mg (76%). Other compounds were synthesized analogously and the selected spectroscopic data of 7a, 7c, 7d, 7h, 4a and 5a are as follows.

Compound **7a**: 76%; Yellow solid, mp 146–147 °C; IR (KBr) 3446, 1601, 1450, 1439 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.56 (s, 3H), 4.05 (s, 2H), 6.39–6.45 (m, 1H), 6.81 (dd, *J* = 8.1 and 1.5 Hz, 1H), 6.99 (dd, *J* = 8.1 and 1.5 Hz, 1H), 7.08–7.36 (m, 11H), 7.48 (s, 1H), 13.18 (br s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.82, 38.21, 117.82, 117.86, 120.24, 126.55, 127.41, 128.62, 128.71, 128.73, 129.17, 130.06, 131.21, 132.44, 133.93, 138.58, 140.21, 142.14, 152.34, 153.21, 158.39; ESIMS *m*/*z* 352 (M^{*}+1). Anal. Calcd for C₂₅H₂₁NO: C, 85.44; H, 6.02; N, 3.99. Found: C, 85.21; H, 6.34; N, 3.87.

Compound **7c**: 58%; White solid, mp 137–138 °C; IR (KBr) 3419, 1602, 1568, 1424, 1086 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.55 (s, 3H), 4.04 (s, 2H), 6.38 (dd, *J* = 8.4 and 2.1 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 6.99 (d, *J* = 2.1 Hz, 1H), 7.14–7.39 (m, 10H), 7.47 (s, 1H), 13.76 (br s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.77, 38.21, 117.99, 118.09, 118.57, 126.63, 127.66, 128.62, 128.76, 128.94, 129.09, 131.90, 132.77, 133.96, 135.14, 138.42, 139.84, 142.26, 151.45, 153.19, 159.62; ESIMS *m*/z 386 (M⁺+1). Anal. Calcd for C₂₅H₂₀CINO: c, 77.81; H, 5.22; N, 3.63. Found: C, 78.03; H, 5.47; N, 3.60.

Compound **7d**: 61%; Pale yellow solid, mp 133–134 °C; IR (KBr) 3419, 1626, 1450, 1426 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.23 (s, 3H), 2.54 (s, 3H), 4.03 (s,

For the Pd-mediated ortho-alkylation of 2-arylpyridine and related compounds, see: (a) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008, 130, 2900-2901; (b) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 78-79; (c) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634– 12635.

2H), 6.24 (dd, J = 8.0 and 1.5 Hz, 1H), 6.69 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 1.0 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H), 7.21–7.35 (m, 8H), 7.45 (s, 1H), 13.35 (br s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.29, 21.80, 38.19, 117.41, 118.24, 118.89, 126.52, 127.34, 128.62, 128.70, 128.74, 129.15, 130.94, 131.95, 133.58, 138.68, 140.44, 140.50, 142.12, 152.50, 153.02, 158.47; ESIMS m/z 366 (M*1). Anal. Calcd for C₂₆H₂₃NO: C, 85.45; H, 6.34; N, 3.83. Found: C, 85.37; H, 6.59; N, 3.98.

Compound **7h**: 80%; White solid, mp 186–187 °C; IR (KBr) 1722, 1608, 1173, 1112 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.68 (s, 3H), 4.12 (s, 2H), 7.13–7.16 (m, 2H), 7.22–7.57 (m, 6H), 8.27 (s, 1H), 8.57–8.60 (m, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 23.78, 38.80, 115.29, 117.05, 119.37, 124.51, 124.68, 126.81, 128.70, 128.84, 131.60, 135.48, 137.86, 137.99, 149.44, 152.50, 161.51, 165.37; ESIMS *m*/*z* 302 (M^{*+1}). Anal. Calcd for C₂₀H₁₅NO₂: C, 79.72; H, 5.02; N, 4.65. Found: C, 00.00; H, 0.00; N, 0.00.

Compound **4a**: 61%; Pale yellow solid, mp 121–122 °C; IR (KBr) 1764, 1428, 1212, 1191 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.00 (s, 3H), 2.56 (s, 3H), 4.07 (s, 2H), 7.05–7.35 (m, 14H), 7.45 (s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 20.88, 22.23, 38.48, 122.67, 125.43, 126.41, 127.07, 128.07, 128.63, 128.71, 128.77, 129.06, 132.03, 132.75, 133.11, 134.43, 138.93, 139.14, 139.19, 148.29, 151.04, 155.51, 168.53; ESIMS *m*/*z* 394 (M*+1).

Compound **5a**: 11%; Pale yellow oil; IR (film) 1600, 1493, 1426, 1246 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.59 (s, 3 H), 3.23 (s, 3H), 4.06 (s, 2H), 6.63 (dd, *J* = 8.4 and 0.9 Hz, 1H), 6.99 (td, *J* = 7.5 and 0.9 Hz, 1H), 7.06–7.10 (m, 2H), 7.13–7.17 (m, 3H), 7.21–7.27 (m, 4H), 7.29–7.34 (m, 2H), 7.40 (s, 1H), 7.44 (dd, *J* = 7.2 and 1.2 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 22.41, 38.57, 54.72, 110.77, 120.80, 126.35, 126.54, 127.58, 128.57, 128.61, 128.91, 129.32, 129.87, 131.45, 132.74, 135.07, 138.42, 139.15, 140.32, 152.43, 155.59, 156.15; ESIMS *m*/*z* 366 (M⁺+1).

- 11. The use of Pd(PPh₃)₄ instead of Pd(OAc)₂ caused less reactivity in the reaction of **3a**, as an example. The use of H_2O_2 (30% solution) instead of Oxone produced **7a** in trace amounts (<10%).
- 12. The reaction of acetophenone oxime methyl ether afforded the corresponding 2-hydroxy product in 47%.^{4c} Whereas the reaction of 2-phenylpyridine gave 2hydroxy compound in only 5% (2-phenylpyridine was recovered in 16% and dimeric compound^{2b} was isolated in 20%).
- 13. Recently, Cu(II)-catalyzed ortho-hydroxylation of 2-phenylpyridine has been reported using O₂ as an oxidant and they used water as an anion (OH) source in the reaction.⁵¹ Sanford and coworkers also observed Pd(OAc)₂-catalyzed C-H bond methoxylation with MeOH/Oxone and they proposed the mechanism involving Pd^{IV} intermediate.^{4c}