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Regioselective ortho-hydroxylation of aryl moiety of 2-arylpyridines was carried out under the influence
of Pd(OAc)2/Oxone (potassium peroxymonosulfate) in PEG-3400/t-BuOH in moderate yields.
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Recently, palladium-mediated C–H bond activations of 2-aryl-
pyridines and related systems are regarded as one of the hot
topics.1–4 Introductions of various functional groups have been
reported, including alkyls,1 aryls,2 halogens3 and acetoxy group.4

Although many types of functionalizations have been reported,
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direct hydroxylation is unprecedented to the best of our knowl-
edge.1–5

Very recently we reported an efficient synthetic method of
poly-substituted pyridines from Baylis-Hillman adducts via the
[3+2+1] annulation protocol.6 Further functionalization of the
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Table 1
Optimization for the synthesis of 7a

Table 2 (continued)

Entry Substratea (%) Productb (%)

7 N

Ph
Ph

3g (75/85)

N

Ph
Ph

HO7g (28)

8 N

COOEt
Ph
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Ph
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O
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pyridines would provide valuable pyridine derivatives, which
could be used for many purposes.7–9 In this respect, we decided
to examine the feasibility for the regioselective introduction of
acetoxy or alkoxy group at the ortho-position of 2-aryl moiety (vide
infra, Scheme 1).

Starting material 3a was prepared as reported in good yield.6

With this compound 3a, we examined acetoxylation as the first
trial under the reported conditions which comprised Pd(OAc)2/
PhI(OAc)2/AcOH/Ac2O at 100–110 �C.4 Compound 4a was synthe-
sized in 61% yield in 1 h (Scheme 1, entry 1 in Table 1). The use
of Oxone (potassium peroxymonosulfate) or the reaction in tert-
BuOH resulted in lower yield of product 4a (entries 2 and 3).
Table 2
Synthesis of ortho-hydroxyaryl pyridines 7a–j

Entry Substratea (%) Productb (%)

1 N

Ph
Ph

3a (77/88)

N

Ph
Ph

HO7a (76)

2 N

Ph(4-OMe)
Ph

3b (82/79) OMe

N

Ph(4-OMe)
Ph

HO7b (61) OMe

3 N
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Ph
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N
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Ph
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9
N

Ph
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N

Ph
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Cl

10
N

Ph
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OMe

N

Ph
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OMe

a Prepared according to Ref. 6 and the first yield refer to the first SN20 step and the
second one to the synthesis of pyridine.

b Conditions: Substrate 3 (1.0 equiv), Pd(OAc)2 (10 mol %), PEG-3400/t-BuOH,
Oxone (5.0 equiv), 80–90 �C, 2 h.

c No reaction even at 120 �C.
As a next trial, the synthesis of alkoxy derivatives was examined
under the conditions of Pd(OAc)2/Oxone/alcohol (Scheme 1, entries
4 and 5 in Table 1). The reaction was sluggish and the correspond-
ing methoxy- and iso-propoxy derivatives, 5a and 6a, were ob-
tained in only 10–11% yields. However, we observed the
formation of phenol derivative 7a, albeit in low yields (3–8%), very
interestingly. We thought that the yield of 7a could be increased by
using non-oxidizable alcohol solvent such as tert-butanol instead
of methanol or 2-propanol. Thus, a variety of conditions were
examined in order to find an optimized one (entries 6–10 in Table
1). As expected, 7a was isolated in 64% yield in tert-butanol (entry
6). The use of tert-amyl alcohol or acetonitrile was less effective
(entries 7 and 9). The best yield of 7a was observed when the reac-
tion was carried out in PEG-3400/tert-butanol10 as reaction med-
ium with 5.0 equiv of Oxone (76%, entry 8). The use of K2S2O8

was less effective (entry 10).
Encouraged by the results, we synthesized various 2-arylpyri-

dine derivatives 3b–j according to our previous Letter.6 Introduction
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of ketone compound 2 at the primary position of Baylis-Hillman
acetate 1 was carried out with the aid of K2CO3 in DMF in good yields
(72–86%). Next, pyridine synthesis with NH4OAc was also carried
out as reported in 73–88% yields.6 With these starting materials
we examined the selective ortho-hydroxylation under the opti-
mized conditions and the results are summarized in Table 2.

The corresponding 2-hydroxy derivatives were synthesized in
moderate to good yields in most cases (7a–d, 7i, 7j). Tricyclic com-
pound 7h was obtained in good yield (80%) when we used 3h (en-
try 8). This compound must be formed via the intramolecular
lactonization of the initially generated ortho-hydroxy intermedi-
ate. However, the reaction was completely failed with 2,5-di-
methyl and 2,4-dimethyl derivatives, 3e and 3f (entries 5 and 6).
We could not obtain any trace amounts of desired products (7e,
7f) in these cases even at elevated temperature. Whereas we
obtained low yield of product 7g (28%) from 3,4-dimethyl deriva-
tive 3g (entry 7). Based on the experimental results, the failure
for the dimethyl cases, 3e and 3f, might be due to the steric effect
of the ortho-methyl group, which makes the formation of the
palladacycle intermediate difficult.

When we add some water to the reaction mixture of 3a, the
yield of 7a was decreased. When the reaction was carried out un-
der strictly controlled nitrogen atmosphere, compound 7a was ob-
tained in a similar yield. From these experiments, we tentatively
propose the mechanism involving the Oxone as a plausible source
of oxygen atom (Scheme 2): Oxidative insertion of Pd(0) into the
weak O–O bond of Oxone1a and the liberation of product (ArOH)
and KHSO4. Further studies on the reaction mechanism and
the synthetic applicability of these findings are actively under
progress.11–13

In summary, we disclosed the synthesis of poly-substituted pyr-
idines functionalized with hydroxyl group regioselectively via the
Pd-mediated C–H activation process. Further studies on the reac-
tion mechanism and the biological activities of prepared com-
pounds are currently underway.
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12. The reaction of acetophenone oxime methyl ether afforded the corresponding
2-hydroxy product in 47%.4c Whereas the reaction of 2-phenylpyridine gave 2-
hydroxy compound in only 5% (2-phenylpyridine was recovered in 16% and
dimeric compound2b was isolated in 20%).

13. Recently, Cu(II)-catalyzed ortho-hydroxylation of 2-phenylpyridine has been
reported using O2 as an oxidant and they used water as an anion (OH) source in
the reaction.5i Sanford and coworkers also observed Pd(OAc)2-catalyzed C–H
bond methoxylation with MeOH/Oxone and they proposed the mechanism
involving PdIV intermediate.4c


	Regioselective ortho-hydroxylation of aryl moiety of 2-arylpyridines using Pd(OAc)2/Oxone in PEG-3400/tert-BuOH
	Acknowledgements
	References and notes


